Assortment Optimization under the Paired Combinatorial Logit Model
نویسندگان
چکیده
We consider uncapacitated and capacitated assortment problems under the paired combinatorial logit model, where the goal is to find a set of products to maximize the expected revenue obtained from each customer. In the uncapacitated setting, we can offer any set of products, whereas in the capacitated setting, there is a limit on the number of products that we can offer. We establish that even the uncapacitated assortment problem is strongly NP-hard. To develop an approximation framework for our assortment problems, we transform the assortment problem into an equivalent problem of finding the fixed point of a function, but computing the value of this function at any point requires solving a nonlinear integer program. Using a suitable linear programming relaxation of the nonlinear integer program and randomized rounding, we obtain a 0.6-approximation algorithm for the uncapacitated assortment problem. Using randomized rounding on a semidefinite programming relaxation, we obtain an improved, but a more complicated, 0.79-approximation algorithm. Finally, using iterative variable fixing and coupled randomized rounding, we obtain a 0.25-approximation algorithm for the capacitated assortment problem. Our computational experiments demonstrate that our approximation algorithms, on average, yield expected revenues that are within 3.6% of a tractable upper bound on the optimal expected revenues.
منابع مشابه
Joint Optimization of Assortment Selection and Pricing under the Capacitated Multinomial Logit Choice Model with Product-Differentiated Price Sensitivities
Joint Optimization of Assortment Selection and Pricing under the Capacitated Multinomial Logit Choice Model with Product-Differentiated Price Sensitivities Ruxian Wang HP Laboratories HPL-2012-207 Multinomial Logit model; assortment optimization; multi-product price optimization Many firms face a problem to select an assortment of products and determine their prices to maximize the total prof...
متن کاملOn upper bounds for assortment optimization under the mixture of multinomial logit models
The assortment optimization problem under the mixture of multinomial logit models is NPcomplete and there are different approximation methods to obtain upper bounds on the optimal expected revenue. In this paper, we analytically compare the upper bounds obtained by the different approximation methods. We propose a new, tractable approach to construct an upper bound on the optimal expected reven...
متن کاملConstrained Assortment Optimization for the Nested Logit Model
We study assortment optimization problems where customer choices are governed by the nested logit model and there are constraints on the set of products offered in each nest. Under the nested logit model, the products are organized in nests. Each product in each nest has a fixed revenue associated with it. The goal is to find a feasible set of products, i.e. a feasible assortment, to maximize t...
متن کاملThe d-Level Nested Logit Model: Assortment and Price Optimization Problems
We consider assortment and price optimization problems under the d-level nested logit model. In the assortment optimization problem, the goal is to find the revenue-maximizing assortment of products to offer, when the prices of the products are fixed. Using a novel formulation of the d-level nested logit model as a tree of depth d, we provide an efficient algorithm to find the optimal assortmen...
متن کاملAssortment Optimization under the Sequential Multinomial Logit Model
We study the assortment optimization problem under the Sequential Multinomial Logit (SML), a discrete choice model that generalizes the multinomial logit (MNL). Under the SML model, products are partitioned into two levels, to capture differences in attractiveness, brand awareness and, or visibility of the products in the market. When a consumer is presented with an assortment of products, she ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017